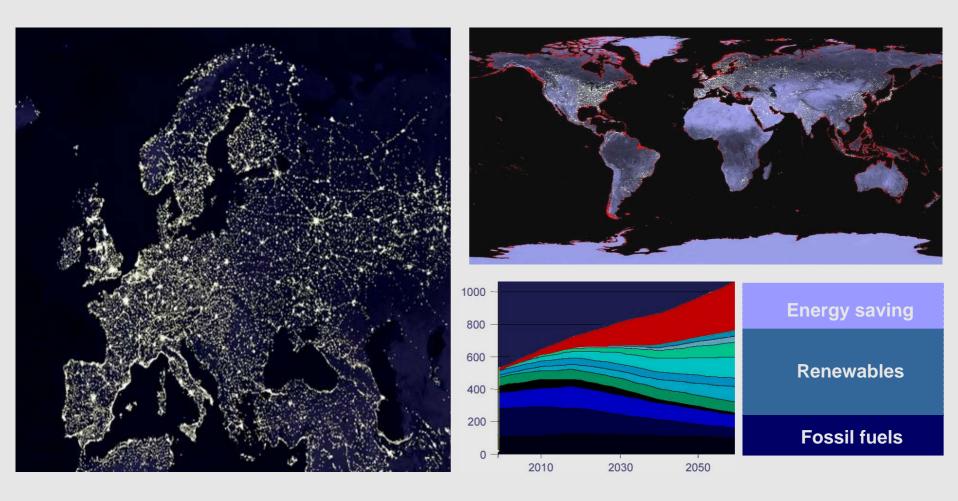
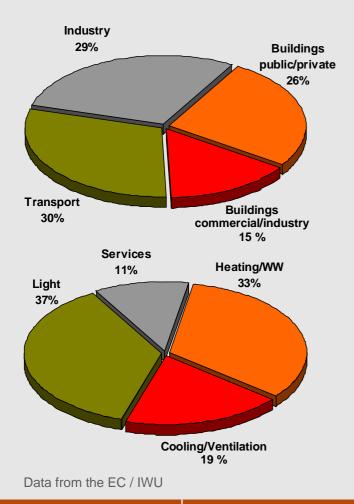
Dr.-Ing. Daniel Scherz



Energy efficient building design for the Mediterranean region

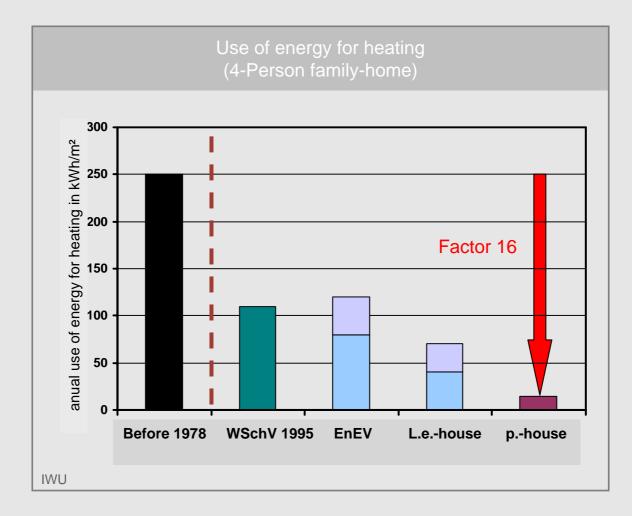
Exportinitiative Energieeffizienz

Bundesministerium für Wirtschaft und Technologie


October 14, 2009 Mailand

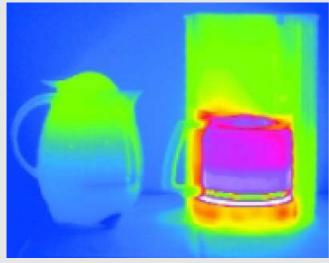
Energy efficient building design for warm climates

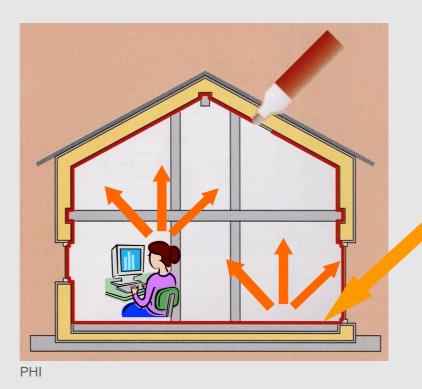
Primary energy use in the EU / in standard office buildings



- Cost-saving in the long run
 Cost-effective energy saving potential of 20-30 %
- Better comfort
 Comfortable temperatures
- Better building quality
 Less damages and building repairs
- Image improvement
 Awareness of the social responsibility

October 14, 2009 Mailand



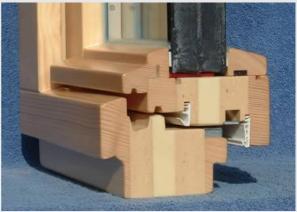


Energy efficient building design for warm climates

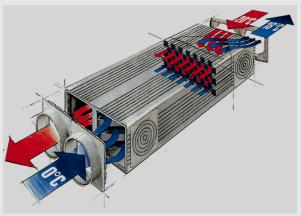
PHI

Use of heating energy: 15 kWh/m²a

October 14, 2009 Mailand Energy efficient building design for warm climates



Rockwool


PH Roenn

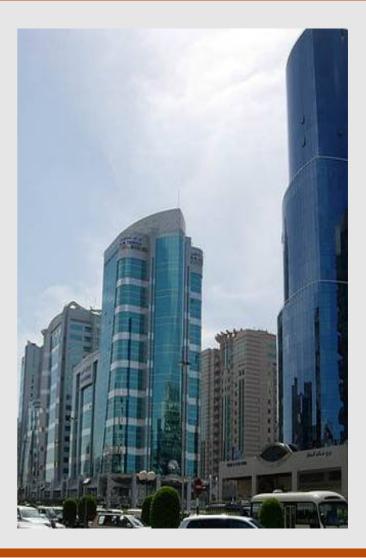

Buck-Fenster

Paul Lüftungsanlagen

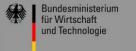
PHI, Architecture Klaus Gierke

PHI, Architecture Plan-R

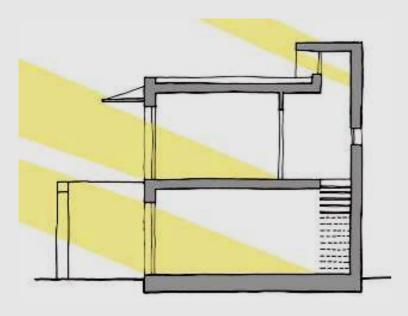
PHI, Architecture Casa Nova GmbH

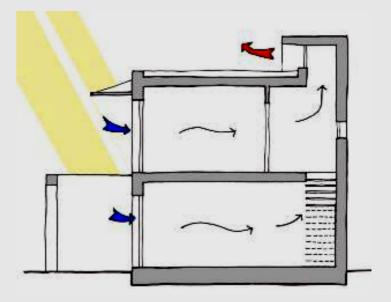


PHI, Architecture Dipl.-Ing. Martin Zimmer



- Building design and town planning
 Adapted to the local situation
- Building structure
 To prevent energy losses and/or to utilize energy gains
- Technical systems
 Optimized and supported by renewable energy

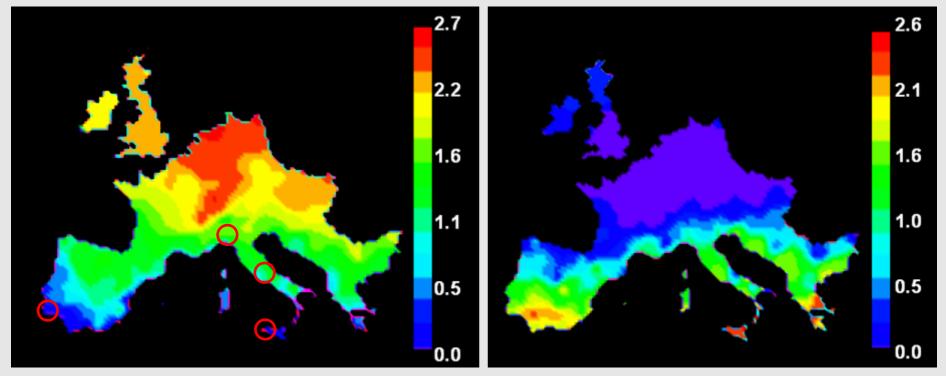




Shading concept summer / winter

Passive-On project

October 14, 2009 Mailand



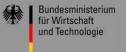
- Narrow streets
 Buildings shade themselves and the streets
- Light colours
 Better reflexion of the sunlight
- Thick walls made of dense material Better temperature storage
- Plants and water in and around the building Improvement of the microclimate
- Shading adaped to the local climate
 Solar gains in the winter and/or shading in the summer

Passive-On project, Climatic Severity Index (CSI), Winter / Summer

Passive-On project

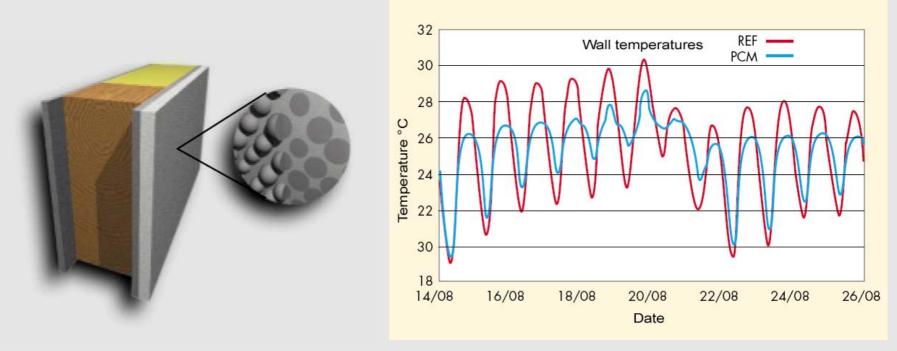
October 14, 2009 Mailand

Insulation thickness and effect on the energy demand in different climates


		Milan	Rome	Palermo			Milano	Villafranca	Roma	Palermo	
		0.14					ating load				
External walls	U-value	0.14	0.32	0.23		28 cm	19.9	20.0	7.2	0.48	
	(W/m ² K)					20 cm	23.0	22.9	9.1	0.95	
	. ,					15 cm	26.3	26.2	11.1	1.57	
	Insulation	25	10	15		Cooling load					
	(cm)					28 cm 20 cm	0.86 0.85	0.69 0.68	2.38 2.42	6.6 6.7	
	(GIII)					15 cm	0.85	0.67	2.42	6.7	
Under roof	U-value	0.15	0.32	0.23	-	13 011	0.05	0.07	2.40	0.7	
	(W/m ² K)					80	73.5		Factor_12,5		
	Insulation	25	10	15		70 60					
	(cm)					50					
Foundations	U-value	0.32	0.32	1.7	kWh/m ²	40				Factor 8,5	
	(W/m ² K)					30	32.	0			
	Insulation	10	10	0		20					
	(cm)					0			5.9	3.7	
Passive-On project					1	Sta	ndard House (DL 8	0/2006)	Portugal Pas	ssivhaus	
October 14, 2009 Mailand		Energy efficient building design for warm climates				sign	Bundesministerium für Wirtschaft und Technologie				

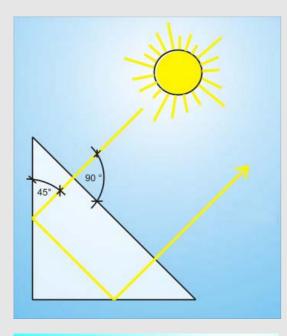
Life cycle costs for PH buildings in different climates

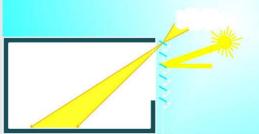
		France	Germany	Italy	Spain Granada	Spain Seville	UK
Extra Capital Costs (€/m²)		103	94	60	24,1	20,5	73
Extra Capital Costs (%)		9%	6,71%	5%	3,35%	2,85%	5,54%
Total Energy Savings (kWh/m²/year)		55	75,0	86,0	65,5	37,6	39,7
Total Energy Savings (%)		45%	50,0%	65,4%	57,3%	40,7%	26,4%
Extra Costs per saved kWh/m²/year		1,87	1,25	0,70	0,37	0,55	1,84
LCC 10 years€	Standard	143.731	184.716	193.817	101.828	98.385	108.337
	Passive	152.621	190.104	190.437	95.676	96.100	111.988
LCC 20 years€	Standard	160.343	204.942	221.148	117.928	108.689	117.875
	Passive	160.552	200.579	198.458	103.647	102.290	117.256
Cost-Benefit Ratio, 10 years		-0,72	-0,48	0,39	2,13	0,93	-0,65
Cost-Benefit Ratio, 20 years		0,02	0,39	2,63	4,94	2,60	0,11
Discounted Payback Period (years)		19.5	19	8	4	5	19


Passive-On project

October 14, 2009 Mailand

Phase Change Materials (PCM)


BINE Informationsdienst IV/02


Day:Rising heat load>PCM change from solid to fluid>absorption of heatNight:Cool air ventilation>PCM change from fluid to solid>release of heat

October 14, 2009 Mailand Energy efficient building design for warm climates

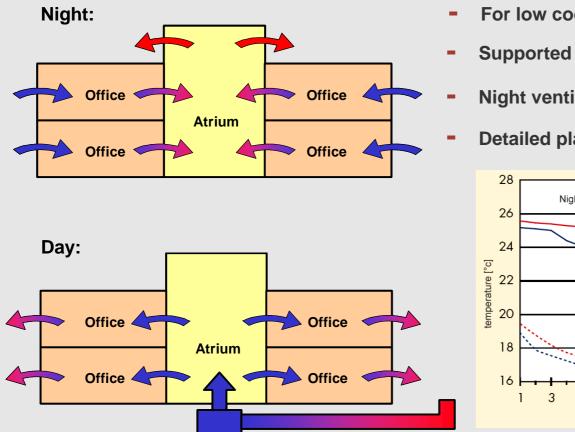
Day light use

Haas-Arndt/Schädlich

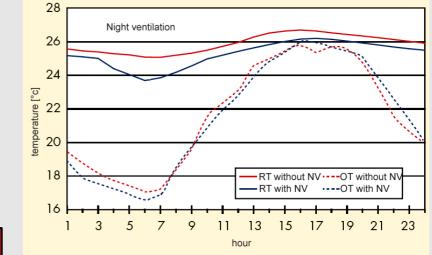
Energy saving potential through daylight use up to 70%

October 14, 2009 Mailand *Energy efficient building design for warm climates*

Passive house strategy for warm climates


- Definition for PH standard in warm climates: Heating and/or cooling demand < 15 kWh/m²a
 Primary energy < 120 kWh/m²a
- Insulation important, but lower thickness than in colder climates
- No insulation of the ground floor in very warm climates > heat sink
- Thermal mass of building important to reduce the temperature peaks
- Shading important to reduce the heat load
- Requirements for air tightness not as high as in colder climates
- Reduction of cooling load can make active cooling system redundant

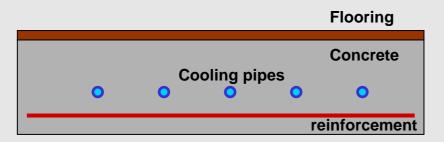
October 14, 2009 Mailand



Night ventilation

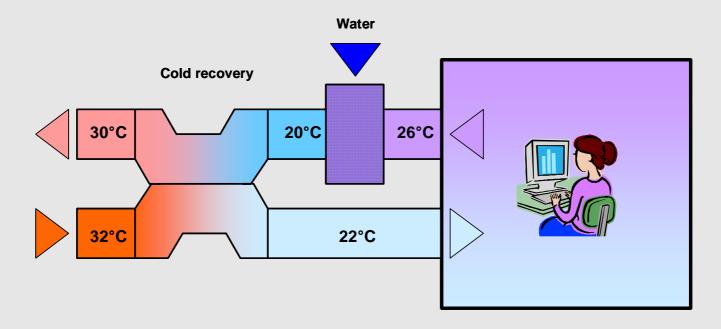
- For low cooling demands
- Supported by high thermal mass of building
- Night ventilation if temperatures 5h < 21°C
- Detailed planning and simulation necessary

BINE Informationsdienst I/03


October 14, 2009 Mailand Energy efficient building design for warm climates

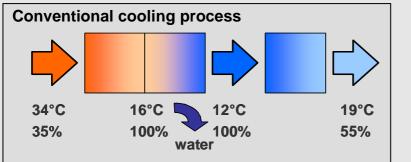
Thermal activation of building components and cooling ceilings

- Air cooling or fluid cooling systems
- High thermal mass of building components
- Usable for cooling and heating
- System temperature > 22 °C and < 28°C

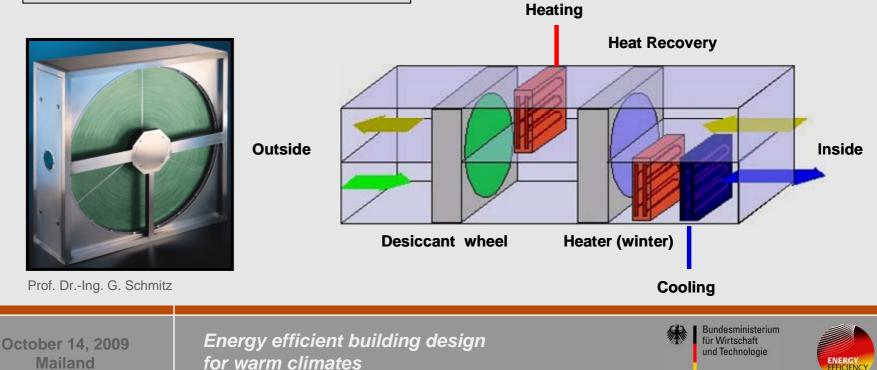


October 14, 2009 Mailand

Adiabatic cooling


Use of water: 1 I for 1 m² office space per day

October 14, 2009 Mailand



Desiccant assisted air conditioning

Main demand shifted from cooling to heating

- Less overall energy demand
- Heating with solar or waste energy
- Cooling without electricity use

- Energy saving in buildings because of climate change and energy supply situation, but also marketing advantage
- For cold climates proved solutions already exist (example Passive House)
- With little changes these concepts also work in warmer climates
- An optimized building design and building structure can make an active cooling system redundant
- If there is a need for active cooling different solutions with low energy demand and/or use of renewable energies exist

Thank you !

www.efficiency-from-germany.info